# Know_phi
# 考点
- 已知 分解
- DSA 数字签名算法
# DSA 算法
安全性基于求离散对数的困难性
-
全局公开钥
:满足的大素数,其中,并且是的倍数
: 的素因子,满足 长为 比特
:,其中 是满足 且使得 的任一整数
-
用户秘密钥
是满足 的随机数或伪随机数
-
用户的公开钥
-
用户为待签消息选取的秘密数
是满足 的随机数或伪随机数
-
签名过程
用户对消息的签名为二元对,其中,,是由求出的哈希值
-
验证过程
设接收方受到的消息为,签名为。计算
检查 是否和 相等,若相等则认为签名有效,因为若,则
# 题目
from Crypto.Util.number import getPrime, bytes_to_long, inverse, long_to_bytes | |
from Crypto.PublicKey import DSA | |
from hashlib import sha256 | |
import random | |
from secret import flag | |
def gen(a): | |
p = getPrime(a) | |
q = getPrime(a) | |
r = getPrime(a) | |
x = getPrime(a) | |
n = p*q*r*x | |
phi = (p-1)*(q-1)*(r-1)*(x-1) | |
return n, phi, [p, q, r, x] | |
def sign(m, k, x, p, q, g): | |
hm = bytes_to_long(sha256(m).digest()) | |
r = pow(g, k, p) % q | |
s = (hm + x*r) * inverse(k, q) % q | |
return r,s | |
e = 65537 | |
a = 256 | |
x = bytes_to_long(flag) | |
# print(x) | |
n, phi, n_factors = gen(a) | |
n_factors = sorted(n_factors) | |
print(f'n = {n}') | |
print(f'phi = {phi}') | |
m1 = long_to_bytes(n_factors[0] + n_factors[3]) | |
m2 = long_to_bytes(n_factors[1] + n_factors[2]) | |
# print(f'm1 = {m1}') | |
# print(f'm2 = {m2}') | |
key = DSA.generate(int(2048)) | |
q = key.q | |
p = key.p | |
g = key.g | |
assert q > x | |
k = random.randint(1, q-1) | |
r1, s1 = sign(m1, k, x, p, q, g) | |
r2, s2 = sign(m2, k, x, p, q, g) | |
# print(f'k = {k}') | |
print(f'q = {q}') | |
print(f's1 = {s1}') | |
print(f'r1 = {r1}') | |
print(f's1 = {s1}') | |
print(f'r2 = {r2}') | |
print(f's2 = {s2}') | |
''' | |
n = 104228256293611313959676852310116852553951496121352860038971098657350022997841589403091722735802150153734050783858816709247647536393314564077002364012463220999962114186339228164032217361145009468516448617173972835797623658266515762201804936729547278758839604969469770650218191574897316410254695420895895051693 | |
phi = 104228256293611313959676852310116852553951496121352860038971098657350022997837434645707418205268240995284026522165519145773852565112344453740579163420312890001524537570675468046604347184376661743552799809753709321949095844960227307733389258381950812717245522599433727311919405966404418872873961877021696812800 | |
q = 24513014442114004234202354110477737650785387286781126308169912007819 | |
s1 = 764450933738974696530033347966845551587903750431946039815672438603 | |
r1 = 8881880595434882344509893789458546908449907797285477983407324325035 | |
r2 = 8881880595434882344509893789458546908449907797285477983407324325035 | |
s2 = 22099482232399385060035569388467035727015978742301259782677969649659 | |
''' |
# Solve
给定了对不同消息的签名 和公开钥,目标是求
和 没有直接给出,但根据题目知道我们需要分解 来得到,但用 yafu
分解不了,但已知,有一个根据 分解 的脚本
def factorize_multi_prime(N,phi): | |
""" | |
Recovers the prime factors from a modulus if Euler's totient is known. | |
This method works for a modulus consisting of any number of primes, but is considerably be slower than factorize. | |
More information: Hinek M. J., Low M. K., Teske E., "On Some Attacks on Multi-prime RSA" (Section 3) | |
:param N: the modulus | |
:param phi: Euler's totient, the order of the multiplicative group modulo N | |
:return: a tuple containing the prime factors | |
""" | |
prime_factors=set() | |
factors=[N] | |
while len(factors)>0: | |
N=factors[0] | |
w=randrange(2,N-1) | |
i=1 | |
while phi%(2**i)==0: | |
sqrt_1=pow(w,phi//(2**i),N) | |
if sqrt_1>1 and sqrt_1!=N-1: | |
factors=factors[1:] | |
p=gcd(N,sqrt_1+1) | |
q=N//p | |
if gmpy2.is_prime(p): | |
prime_factors.add(int(p)) | |
elif p>1: | |
factors.append(int(p)) | |
if gmpy2.is_prime(q): | |
prime_factors.add(int(q)) | |
elif q>1: | |
factors.append(int(q)) | |
break | |
i=i+1 | |
return tuple(prime_factors) |
然后一般对于 DSA 的攻击,需要求出,所以就是式子推导时间
由于,故,题目给的也是
故
之后求
from Crypto.Util.number import getPrime, bytes_to_long, inverse, long_to_bytes | |
from Crypto.PublicKey import DSA | |
from hashlib import sha256 | |
from math import gcd | |
from random import randrange | |
import gmpy2 | |
import libnum | |
def factorize_multi_prime(N,phi): | |
""" | |
Recovers the prime factors from a modulus if Euler's totient is known. | |
This method works for a modulus consisting of any number of primes, but is considerably be slower than factorize. | |
More information: Hinek M. J., Low M. K., Teske E., "On Some Attacks on Multi-prime RSA" (Section 3) | |
:param N: the modulus | |
:param phi: Euler's totient, the order of the multiplicative group modulo N | |
:return: a tuple containing the prime factors | |
""" | |
prime_factors=set() | |
factors=[N] | |
while len(factors)>0: | |
N=factors[0] | |
w=randrange(2,N-1) | |
i=1 | |
while phi%(2**i)==0: | |
sqrt_1=pow(w,phi//(2**i),N) | |
if sqrt_1>1 and sqrt_1!=N-1: | |
factors=factors[1:] | |
p=gcd(N,sqrt_1+1) | |
q=N//p | |
if gmpy2.is_prime(p): | |
prime_factors.add(int(p)) | |
elif p>1: | |
factors.append(int(p)) | |
if gmpy2.is_prime(q): | |
prime_factors.add(int(q)) | |
elif q>1: | |
factors.append(int(q)) | |
break | |
i=i+1 | |
return tuple(prime_factors) | |
n=104228256293611313959676852310116852553951496121352860038971098657350022997841589403091722735802150153734050783858816709247647536393314564077002364012463220999962114186339228164032217361145009468516448617173972835797623658266515762201804936729547278758839604969469770650218191574897316410254695420895895051693 | |
phi=104228256293611313959676852310116852553951496121352860038971098657350022997837434645707418205268240995284026522165519145773852565112344453740579163420312890001524537570675468046604347184376661743552799809753709321949095844960227307733389258381950812717245522599433727311919405966404418872873961877021696812800 | |
q = 24513014442114004234202354110477737650785387286781126308169912007819 | |
s1 = 764450933738974696530033347966845551587903750431946039815672438603 | |
r1 = 8881880595434882344509893789458546908449907797285477983407324325035 | |
r2 = 8881880595434882344509893789458546908449907797285477983407324325035 | |
s2 = 22099482232399385060035569388467035727015978742301259782677969649659 | |
fac=factorize_multi_prime(n,phi) | |
invs=inverse(s1-s2,q) | |
invr1=inverse(r1,q) | |
for P in fac: | |
for Q in fac: | |
if P==Q: | |
continue | |
for R in fac: | |
if P==R or Q==R: | |
continue | |
for X in fac: | |
if P==X or Q==X or R==X: | |
continue | |
M1=long_to_bytes(P+X) | |
M2=long_to_bytes(Q+R) | |
HM1=bytes_to_long(sha256(M1).digest()) | |
HM2=bytes_to_long(sha256(M2).digest()) | |
k=invs*(HM1-HM2)%q | |
x=invr1*(s1*k-HM1)%q | |
if b'flag' in long_to_bytes(x): | |
print(long_to_bytes(x)) |
flag{ea16de7-1981-11ed-b58f}
# rsa
# 题目
from Crypto.Util.number import bytes_to_long, getPrime, isPrime | |
from Crypto.Random import random | |
from random import getrandbits | |
from sympy.ntheory.residue_ntheory import nthroot_mod | |
from sympy import nextprime | |
from secret import flag | |
def get_primes(m): | |
p = getPrime(Bits) | |
pl = p & int('f'*(m//4), 16) | |
q = (getrandbits(Bits - m) << m)^^pl | |
while not isPrime(q): | |
q = (getrandbits(Bits - m) << m)^^pl | |
return (p, q) | |
def get_key(p, q, delta, beta, Bits): | |
phi = (p - 1) * (q - 1) | |
d1 = getPrime(floor(2 * Bits * delta)) | |
e1 = inverse_mod(d1, phi) | |
d2 = nextprime(d1 ^^ getrandbits(floor(2 * Bits * beta))) | |
e2 = inverse_mod(d2, phi) | |
d3 = getPrime(floor(2 * Bits * delta)) | |
e3 = inverse_mod(d3, phi) | |
return (e1, e2, e3, d1, d2, d3) | |
if __name__ == '__main__': | |
Bits = 1024 | |
alpha = 0.098 | |
delta = 0.536 | |
beta = delta | |
gamma = 1 | |
m = floor(2 * alpha * Bits) | |
p, q = get_primes(m) | |
n = p * q | |
assert n % 2^3 == 1 | |
u0 = nthroot_mod(n, 2, 2^m, all_roots=False) | |
v0 = (2*u0 + ((n - u0^2) * inverse_mod(u0, 2^(2*m)) % 2^(2*m))) | |
e1, e2, e3, d1, d2, d3 = get_key(p, q, delta, beta, Bits) | |
flag = bytes_to_long(flag) | |
c = pow(flag, e3, n) | |
l0 = d1 - d2 | |
print(f'N = {hex(n)}') | |
print(f'e1 = {hex(e1)}') | |
print(f'e2 = {hex(e2)}') | |
print(f'e3 = {hex(e3)}') | |
print(f'c = {hex(c)}') | |
print(f'v0 = {hex(v0)}') | |
print(f'l0 = {hex(l0)}') | |
# N = 0x62c048bc886075bffb9ad01255786dd8ef2480ba510f13689c1e84ffaaf21dfb5695a4d83f4ba22093bdd75bfc8f5979185d29724ecccf045e1857b1b2a4757dd82dc44318c054c9fce9bc451e6beecb97bbda6562420fc8c295521c5455443413f90403cf1af6271fb6d2d54378b86ced18ae6844a877890ea853a215880a09c68c517a75c1183c067b706ce630f3f0913591f7354cfa60c8f6b7ab2f15e466a1ea6e8034417a5fc3c11b8ba746596c22c734b09257e9a6fb18358738d416eda0ba0e7b028dd2d550b1e018b180916ac25f47910657a5db2410946c0593b7e23ed1659a811083f363ad4eb65642091a040befbd643089bbee376634d2394d11 | |
# e1 = 0x124241a12ea2be53f9b9b1fd92e10d089cfa32aa07e6c2cace848aaa6c73ff06d4c6c92b7d1f29160b2eef95a5f580915d3f15c0ea23975cbadfe8347a10daab2bd0827d7e909b329ec53c5eb306f0a5125b3817e7ea0c15b2317a46c36c4f34fc626dadc6c769bcc7be18ddf7954fae8dde3fd4ce3c5146c019bdb0d9552af1dc9ef7186e06b1d59e763fb05c7cd21fbb3f509fee52d4e24921ebfa76bb8302ea6760e92606e440907cc1c110946af53900904e84dbc309fcef15ea060c667070e5e0310891606df151609ff609bcc6125c6043c35119b25df78b4d5ca61ab6492753cc5e5b32e044fce0aeb0442464f36298add254e9fb6505fa4cddae1cf7 | |
# e2 = 0x17b3937cec3ca5fdddad8db29c6dc4efae1408bf5b4aa2ff602112c50f302e9698c79c7ab79fef0210c621dcc218d91d358b7f93a978c4e3f2b982794697c4797cef89189d1464ed1c767bf72433092922352885f8e355952c558ad2c9ade58a19375ddc5dcf3f9fa28c68a5cff158734d94224b85f77bd939133f39ab7884ece61d9fb3496373008827c2ae694dfe7da08eee348ef99c3a6737a4b088b62978cf209ef3d1140a30d42872615b94378108266e3d344caf51b497a585a4b5ef8619cc46959bad9b89f59f36175fbf9b64363443f3f7743896c72a198decedf89c518fa07b1d401d0359578a4926b7d67de86232ee24751f17dafbc749c0783b33 | |
# e3 = 0x5647c4490bda9e7e497651551600572c5ef4e2d889b9b1ba0e9a493660497e10877e975c01da9aebae5e3ba9aad976a1a783b39191e8fd799689dfa26b069264d60543602d514ac412ac75d827d67c78ad544bda633f0fa69fb5bbc37e0f6b95714576ff53bae3f7f991d143a4b1e841730d5d580d4effeb8fb02e8b3c3c9a1f1899d2eb411ce37f16d30cfa1f7af7322be4f42f5d012f484a1181fa4aa0b5f420a472030a5c08c80bff76ab82ef5768bfd495abcdc5f22aae1891561322dfb28ff63c4e467411c8b73c11d64b05f411e2a1de0c7754c6a62d1f72cded9e2592ccc21be3fce4ea6f083a617a246fd3fe464ef2487adbfabfb628c882ea991675 | |
# c = 0x45f2ee650d622d1e0f0e2e2e861001e9866c541f9f1dd2ec1dec18194f8b7224914916ecd68bbc74b28a000d2664e671586aed63b54c0928a939caf28d39eeba03c0ce3afcf2cdc5805e8e2792d76e88545aa4dee11078ba1e2e5b56ee23d58e443d7aff180d4e7463ae66ea8e96e0c8d4e1443e7664b99599af14e591e28cf2f833bd30b44b89c396b5fc1ee81ea3f7bc08dab426b1871eb66829c81d57e2ebf5c7a3e9c593ce496f0b0c4237906b019ae75ca551d6b0b1adfe64958c2ead6c39e517eb75eaf4b4d72402bea40f043cf0a80317aa2f1a996c727e195e15f903c0cac618f668af1015ee479d1c7b1c1b370fd4a5a76f5bf295e6bd7d0f4ae56f | |
# v0 = 0x2c77a013f2595a90c4e10a53a0f863d02b361c7407dad7d59db7c98df427da00c8d8627dbaef9557279ca31227cdb402d2d2 | |
# l0 = 0x3dbabf6ea5b801221c283bd234f04264d292c8f3048c8b59c21e003cda983a3a41e4392c6ea77a706631de60d261f2b367027e037d37fda5a13a8e01b2c6c0f48a3112315cffe7420a50a3ebada09aba61f8e6da793654a467b9f780c20c5085012e064ab9205c076073b4fb4895e01d0d568fd5c30159879180093855d39d5548a1389a94f57c680c |
# Solve
比较裸的 RSA,令,根据题目,已知
可以发现其实 没有用,目标是求,要先求出,但由于 太大不好分解,所以又是推式子时间
from gmpy2 import * | |
from Crypto.Util.number import * | |
N,e1,e2,e3,c,v0,l0 | |
kL=e1-e2+e1*e2*l0 | |
d3=inverse(e3,kL) | |
m=pow(c,d3,N) | |
print(long_to_bytes(m)) |
flag{-oh!!h0w_c4N_Y0u_sOlVe_th15_d_bouNd_of_RSA???_}